On Convex Ideals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On ideals of ideals in $C(X)$

In this article‎, ‎we have characterized ideals in $C(X)$ in which‎ ‎every ideal is also an ideal (a $z$-ideal) of $C(X)$‎. ‎Motivated by‎ ‎this characterization‎, ‎we observe that $C_infty(X)$ is a regular‎ ‎ring if and only if every open locally compact $sigma$-compact‎ ‎subset of $X$ is finite‎. ‎Concerning prime ideals‎, ‎it is shown that‎ ‎the sum of every two prime (semiprime) ideals of e...

متن کامل

On Power Stable Ideals

We define the notion of a power stable ideal in a polynomial ring R[X] over an integral domain R. It is proved that a maximal ideal χ M in R[X] is power stable if and only if P t is P primary for all t ≥ 1 for the prime ideal P = M ∩ R. Using this we prove that for a Hilbert domain R any radical ideal in R[X] which is a finite intersection G-ideals is power stable. Further, we prove that if R i...

متن کامل

On Clean Ideals

We introduce the notion of clean ideal, which is a natural generalization of clean rings. It is shown that every matrix ideal over a clean ideal of a ring is clean. Also we prove that every ideal having stable range one of a regular ring is clean. These generalize the corresponding results for clean rings. 1. Introduction. Let R be a unital ring. We say that R is a clean ring in case every elem...

متن کامل

On Tree Ideals

Let Io and m° be the ideals associated with Laver and Miller forcing, respectively. We show that add(/°) < cov(/°) and add(m°) < cov(m°) are consistent. We also show that both Laver and Miller forcing collapse the continuum to a cardinal < f). Introduction and notation In this paper we investigate the ideals connected with the classical tree forcings introduced by Laver [La] and Miller [Mi]. La...

متن کامل

Traces on Irregular Ideals

Simple answers are given to the following and related questions: For what Hubert space operator A is it true that the smallest ideal (alternatively, the smallest norm ideal, the smallest maximal norm ideal) containing A is a norm (an intermediate norm, a principal norm) ideal? Do these ideals support a nontrivial unitary invariant positive linear functional?

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1967

ISSN: 0002-9939

DOI: 10.2307/2035297